Aerobic conditioning and allergic pulmonary inflammation in mice. II. Effects on lung vascular and parenchymal inflammation and remodeling.
نویسندگان
چکیده
Recent evidence suggests that asthma leads to inflammation and remodeling not only in the airways but also in pulmonary vessels and parenchyma. In addition, some studies demonstrated that aerobic training decreases chronic allergic inflammation in the airways; however, its effects on the pulmonary vessels and parenchyma have not been previously evaluated. Our objective was to test the hypothesis that aerobic conditioning reduces inflammation and remodeling in pulmonary vessels and parenchyma in a model of chronic allergic lung inflammation. Balb/c mice were sensitized at days 0, 14, 28, and 42 and challenged with ovalbumin (OVA) from day 21 to day 50. Aerobic training started on day 21 and continued until day 50. Pulmonary vessel and parenchyma inflammation and remodeling were evaluated by quantitative analysis of eosinophils and mononuclear cells and by collagen and elastin contents and smooth muscle thickness. Immunohistochemistry was performed to quantify the density of positive cells to interleukin (IL)-2, IL-4, IL-5, interferon-gamma, IL-10, monocyte chemotatic protein (MCP)-1, nuclear factor (NF)-kappaB p65, and insulin-like growth factor (IGF)-I. OVA exposure induced pulmonary blood vessels and parenchyma inflammation as well as increased expression of IL-4, IL-5, MCP-1, NF-kappaB p65, and IGF-I by inflammatory cells were reduced by aerobic conditioning. OVA exposure also induced an increase in smooth muscle thickness and elastic and collagen contents in pulmonary vessels, which were reduced by aerobic conditioning. Aerobic conditioning increased the expression of IL-10 in sensitized mice. We conclude that aerobic conditioning decreases pulmonary vascular and parenchymal inflammation and remodeling in this experimental model of chronic allergic lung inflammation in mice.
منابع مشابه
Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMα) in chronic hypoxia- and antigen-mediated pulmonary vascular remodeling
BACKGROUND Both chronic hypoxia and allergic inflammation induce vascular remodeling in the lung, but only chronic hypoxia appears to cause PH. We investigate the nature of the vascular remodeling and the expression and role of hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMα) in explaining this differential response. METHODS We induced pulmonary vascular remodeling through either chronic h...
متن کاملChronic Allergic Inflammation Causes Vascular Remodeling and Pulmonary Hypertension in Bmpr2 Hypomorph and Wild-Type Mice
Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals wi...
متن کاملClinical and experimental effects of Nigella sativa and its constituents on respiratory and allergic disorders
Objective: Black cumin or Nigella sativa (N. sativa) seed has been widely used traditionally as a medicinal natural product because of its therapeutic effects. In this review, the medicinal properties of N. sativa as a healing remedy for the treatment of respiratory and allergic diseases, were evaluated. Material and Methods: Ke...
متن کاملThe effects of bone marrow-derived mesenchymal stem cells on ovalbumin-induced allergic asthma and cytokine responses in mice
Objective(s): Allergic Asthma is an inflammatory disease of the lungs that is characterized by increased infiltration of leukocytes into the airways, limiting the respiratory function. Studies suggest that a defective general regulatory system against inflammation could be a significant factor in allergic asthma. It has been shown that Mesenchymal stem cells (MSCs) have a cellular immunosuppres...
متن کاملSynthesis and Anti-inflammatory Performance of Newly Cyclizine Derivatives on Adult Male Wistar Rats
Cyclizine (1-benzhydryl-4-methyl-piperazine, CAS 82-92-8, CYC, I), a piperazine derivative, belongs to H1 antihistamine group of drugs that shows such pharmacological properties as anti-inflammatory, anti-allergic and anti-platelet effects, similar to other H1-receptor antagonists. In this study, two new tolyl and cumene derivatives of I (1-ethyl-4-[(p-isopropylphenyl) (p-tolyl) methyl]-piperaz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 295 4 شماره
صفحات -
تاریخ انتشار 2008